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Abstract

A catalytic amount of N-nitroso-2-aryl-1,3-oxazolidines leading to the aromatization of Hantzsch 1,4-dihydropyridines (DHPs) was
successfully achieved. A catalytic mechanism for the reaction is proposed.
� 2008 Elsevier Ltd. All rights reserved.
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Two lines of thought motivated the present study (a)
Hantzsch 1,4-dihydropyridines (DHPs) are model com-
pounds of NADH1 and an important class of drug, which
act as potent blockers of calcium (Ca2+) currents.2 The
metabolism of DHPs involves an oxidation step catalyzed
by cytochrome P-450 in the liver;3 and (b) N-nitrosamines
contained in the human diet are naturally occurring carcino-
gens. They undergo a cytochrome P-450-mediated a-oxi-
dation that converts them into active carcinogens.4

Hence, an investigation of the reaction of DHPs with N-
nitrosamines will be of interest in this particular biochem-
ical context.

Oxidation of DHPs has been carried out using various
oxidants.5 Reactions of DHPs with nitric oxide (NO),6 nitro-
sonium (NO+),7 S-nitrosoglutathione,8 and nitroxide9 are
especially relevant to the present study because N-nitros-
amines are potential NO�/NO+ donors through homolytic
and heterolytic cleavage of the N–NO bond.10 Based on
these previous results, we examined the oxidation of DHPs
with N-nitrosamines.

We carried out the oxidation of DHPs (1) with N-
nitroso-2-aryl-1,3-oxazolidines (2). Oxazolidine 2 is a weak
oxidant easily obtained from the reaction of (E)-2-(benzyl-
idene-amino)ethanol with NO.11 Its reduction potential is
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estimated to be �1.2 V versus Fc+/Fc.12 In a typical exper-
iment, treatment of 1 mmol of 1a with 0.1 mmol of N-
nitroso-2-phenyl-1,3-oxazolidine 2a in 20 mL of anhydrous
CH2Cl2 at room temperature gave corresponding pyridine
3a in 96% yield13 in 6 h (Scheme 1). The reaction occurred
efficiently. Side products were small amounts of benzalde-
hyde and 2-aminoethanol, which were produced from the
decomposition of 2a. Pyridine 3a was characterized by
1H NMR and mass spectroscopy. The reaction conditions
were well optimized using 1a as a substrate in several
organic solvents and with various amounts of 2a, respec-
tively (Tables 1 and 2). They suggest that the oxidation
of 1a very favorably proceeds in CH2Cl2 and with 0.1 equiv
of 2a. Extension to other DHPs with different R-substitu-
ents also gave encouraging results (Table 3). Dealkylation
inclusively occurred only when R is isopropyl group
(entries 7 and 8).5e,6,7,14
Yield up to 96%
1 3

X = H, p-ClR = H, alkyl, Ar
2

Scheme 1.
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Table 3
Oxidation of DHPs with N-nitroso-2-aryl-1,3-oxazolidines

Entry Substrate Oxazolidinea Product Yield of
3b (%)R R

1 1a H 2a 3a H 96
2 1a H 2b 3a H 90
3 1b Me 2a 3b Me 90
4 1b Me 2b 3b Me 77
5 1c Et 2a 3c Et 88
6 1c Et 2b 3c Et 84
7 1d (CH3)2CH 2a 3dc H 92
8 1d (CH3)2CH 2b 3d H 89
9 1e Ph 2a 3e Ph 90

10 1e Ph 2b 3e Ph 88
11 1f p-CH3O–Ph 2a 3f p-CH3O–Ph 95
12 1f p-CH3O–Ph 2b 3f p-CH3O–Ph 95
13 1g p-Cl–Ph 2a 3g p-Cl–Ph 96
14 1g p-Cl–Ph 2b 3g p-Cl–Ph 95
15 1h p-O2N–Ph 2a 3h p-O2N–Ph 94
16 1h p-O2N–Ph 2b 3h p-O2N–Ph 93

a 2a: X = H; 2b: X = p-Cl.
b Isolated yield.
c 3d is identical to 3a.

Table 2
Optimization of the amount of 2a

Entry Amount of 2a

(mol %)
Conver.a

(%)
Time
(h)

Yield of 3ab

(%)

1 1 88 12 78
2 5 90 12 85
3 10 100 6 96
4 10 100 12 96
5 15 100 12 95
6 20 100 12 96

a Determined by GC.
b Isolated yield.

Table 1
Solvent effects on the aromatization of 1a with 2a

Entry Solvent Amount of 2a

(mol %)
Conver.a

(%)
Time
(h)

Yield of 3ab

(%)

1 CH3CN 10 88 12 78
2 CH2Cl2 10 100 6 96
3 Toluene 10 100 6 90
4 EtOH 10 78 12 70
5 MeOH 10 85 12 76
6 THF 10 100 12 88
7 H2O 10 50 12 20

a Determined by GC.
b Isolated yield.
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Scheme 2.
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A catalytic mechanism in the aromatization of 1 with 2 is
depicted in Scheme 2. Although the oxidation of 1 with 2 is
unfavorable in thermodynamics, yet, N-nitroso compounds
are well-known nitrosotransfer agents,7b which have been
widely used to nitrosate many compounds containing NH
group to form the corresponding N-nitroso compounds
via a nucleophilic substitution. A nucleophilic attack of
the nitrogen atom of 1 at the nitrogen atom of the N-nitroso
of 2 most likely undergoes a transnitrosation7b,15 to give a
nitronium ion 4 and an oxazolidine anion 5.7b Followed
by a proton transfer, N-nitrosodihydropyridine 6 and
oxazolidine ring-7 with its acyclic tautomer chain-7 are
formed.11 Oxazolidine ring-7 and chain-7 react with NO
released from 6 in the presence of catalytic O2 to regenerate
2. The homolysis of 6 gives an aminyl radical 8 and
NO.7b,c,15 Followed by a homolysis, radical 8 then converts
to pyridine 3. Aldehyde and 2-aminoethanol are produced
from the decomposition of ring-7 and chain-7.

In conclusion, this work demonstrates a N-nitroso-2-aryl-
1,3-oxazolidine catalyzed pathway for the aromatization of
DHPs to pyridines. It will be of interest to both biochemistry
and organic chemistry.
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