

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 1586-1588

N-Nitroso-2-aryl-1,3-oxazolidines catalyzed aromatization of Hantzsch 1,4-dihydropyridines

Li-jun Peng^a, Jian-tao Wang^a, Zhou Lu^a, Zhong-quan Liu^b, Long-min Wu^{a,*}

^a State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, PR China ^b Institute of Organic Chemistry, Gannan Normal University, Ganzhou 341000, PR China

Received 6 December 2007; revised 27 December 2007; accepted 10 January 2008 Available online 15 January 2008

Abstract

A catalytic amount of *N*-nitroso-2-aryl-1,3-oxazolidines leading to the aromatization of Hantzsch 1,4-dihydropyridines (DHPs) was successfully achieved. A catalytic mechanism for the reaction is proposed. © 2008 Elsevier Ltd. All rights reserved.

Two lines of thought motivated the present study (a) Hantzsch 1,4-dihydropyridines (DHPs) are model compounds of NADH¹ and an important class of drug, which act as potent blockers of calcium (Ca²⁺) currents.² The metabolism of DHPs involves an oxidation step catalyzed by cytochrome P-450 in the liver;³ and (b) *N*-nitrosamines contained in the human diet are naturally occurring carcinogens. They undergo a cytochrome P-450-mediated α -oxidation that converts them into active carcinogens.⁴ Hence, an investigation of the reaction of DHPs with *N*-nitrosamines will be of interest in this particular biochemical context.

Oxidation of DHPs has been carried out using various oxidants.⁵ Reactions of DHPs with nitric oxide (NO),⁶ nitrosonium (NO⁺),⁷ S-nitrosoglutathione,⁸ and nitroxide⁹ are especially relevant to the present study because N-nitrosamines are potential NO⁻/NO⁺ donors through homolytic and heterolytic cleavage of the N–NO bond.¹⁰ Based on these previous results, we examined the oxidation of DHPs with N-nitrosamines.

We carried out the oxidation of DHPs (1) with *N*nitroso-2-aryl-1,3-oxazolidines (2). Oxazolidine 2 is a weak oxidant easily obtained from the reaction of (E)-2-(benzylidene-amino)ethanol with NO.¹¹ Its reduction potential is

0040-4039/\$ - see front matter \odot 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2008.01.043

estimated to be -1.2 V versus Fc⁺/Fc.¹² In a typical experiment, treatment of 1 mmol of 1a with 0.1 mmol of Nnitroso-2-phenyl-1,3-oxazolidine 2a in 20 mL of anhydrous CH₂Cl₂ at room temperature gave corresponding pyridine **3a** in 96% yield¹³ in 6 h (Scheme 1). The reaction occurred efficiently. Side products were small amounts of benzaldehyde and 2-aminoethanol, which were produced from the decomposition of 2a. Pyridine 3a was characterized by ¹H NMR and mass spectroscopy. The reaction conditions were well optimized using 1a as a substrate in several organic solvents and with various amounts of 2a, respectively (Tables 1 and 2). They suggest that the oxidation of **1a** very favorably proceeds in CH₂Cl₂ and with 0.1 equiv of 2a. Extension to other DHPs with different R-substituents also gave encouraging results (Table 3). Dealkylation inclusively occurred only when R is isopropyl group (entries 7 and 8).^{5e,6,7,14}

^{*} Corresponding author. Tel.: +86 931 891 2500; fax: +86 931 891 5557. *E-mail addresses:* penglj04@lzu.cn, nlaoc@lzu.edu.cn (L. Wu).

Table 1 Solvent effects on the aromatization of **1a** with **2a**

Entry	Solvent	Amount of 2a (mol %)	Conver. ^a (%)	Time (h)	Yield of 3a ^b (%)
1	CH ₃ CN	10	88	12	78
2	CH_2Cl_2	10	100	6	96
3	Toluene	10	100	6	90
4	EtOH	10	78	12	70
5	MeOH	10	85	12	76
6	THF	10	100	12	88
7	H_2O	10	50	12	20

^a Determined by GC.

^b Isolated yield.

Table 2 Optimization of the amount of **2a**

Entry	Amount of 2a (mol %)	Conver. ^a (%)	Time (h)	Yield of 3a ^b (%)
1	1	88	12	78
2	5	90	12	85
3	10	100	6	96
4	10	100	12	96
5	15	100	12	95
6	20	100	12	96

^a Determined by GC.

^b Isolated yield.

 Table 3

 Oxidation of DHPs with N-nitroso-2-aryl-1,3-oxazolidines

Entry	Substrate		Oxazolidine ^a	Product		Yield of
		R		R		3 ^b (%)
1	1a	Н	2a	3a	Н	96
2	1a	Н	2b	3a	Н	90
3	1b	Me	2a	3b	Me	90
4	1b	Me	2b	3b	Me	77
5	1c	Et	2a	3c	Et	88
6	1c	Et	2b	3c	Et	84
7	1d	$(CH_3)_2CH$	2a	3d ^c	Н	92
8	1d	$(CH_3)_2CH$	2b	3d	Н	89
9	1e	Ph	2a	3e	Ph	90
10	1e	Ph	2b	3e	Ph	88
11	1f	p-CH ₃ O–Ph	2a	3f	p-CH ₃ O–Ph	95
12	1f	p-CH ₃ O–Ph	2b	3f	p-CH ₃ O–Ph	95
13	1g	p-Cl–Ph	2a	3g	p-Cl-Ph	96
14	1g	p-Cl–Ph	2b	3g	p-Cl–Ph	95
15	1ĥ	$p-O_2N-Ph$	2a	3h	p-O ₂ N–Ph	94
16	1h	p-O ₂ N–Ph	2b	3h	p-O ₂ N–Ph	93

^a **2a**: X = H; **2b**: X = p-Cl.

^b Isolated yield.

^c 3d is identical to 3a.

A catalytic mechanism in the aromatization of 1 with 2 is depicted in Scheme 2. Although the oxidation of 1 with 2 is unfavorable in thermodynamics, yet, *N*-nitroso compounds are well-known nitrosotransfer agents,^{7b} which have been widely used to nitrosate many compounds containing NH group to form the corresponding *N*-nitroso compounds via a nucleophilic substitution. A nucleophilic attack of

the nitrogen atom of 1 at the nitrogen atom of the *N*-nitroso of 2 most likely undergoes a transnitrosation^{7b,15} to give a nitronium ion 4 and an oxazolidine anion 5.^{7b} Followed by a proton transfer, *N*-nitrosodihydropyridine 6 and oxazolidine ring-7 with its acyclic tautomer chain-7 are formed.¹¹ Oxazolidine ring-7 and chain-7 react with NO released from 6 in the presence of catalytic O₂ to regenerate 2. The homolysis of 6 gives an aminyl radical 8 and NO.^{7b,c,15} Followed by a homolysis, radical 8 then converts to pyridine 3. Aldehyde and 2-aminoethanol are produced from the decomposition of ring-7 and chain-7.

In conclusion, this work demonstrates a *N*-nitroso-2-aryl-1,3-oxazolidine catalyzed pathway for the aromatization of DHPs to pyridines. It will be of interest to both biochemistry and organic chemistry.

Acknowledgment

Project No. 20572040 was supported by National Natural Science Foundation of China.

References and notes

- (a) Mauzeral, D.; Westheimer, F. H. J. Am. Chem. Soc. 1955, 77, 2261; (b) Abeles, R. J.; Hutton, R. F.; Westheimer, F. H. J. Am. Chem. Soc. 1957, 79, 712.
- 2. Triggle, D. J.; Langs, D. A.; Janis, R. A. Med. Res. Rev. 1989, 9, 123.
- (a) Bossert, V. F.; Meyer, H.; Wehinger, E. Angew. Chem., Int. Ed. Engl. 1981, 20, 762; (b) de Matteis, F.; Hollands, C.; Gibbs, A. H.; de Sa, N.; Rizzardini, M. FEBS Lett. 1982, 145, 87; (c) Boecker, R. H.; Guengerich, F. P. J. Med. Chem. 1986, 29, 1596; (d) McCluskey, S. A.; Riddick, D. S.; Mackie, J. E.; Kimmet, S. M.; Whitney, R. A.; Marks, G. S. Can. J. Physiol. Pharmcol. 1992, 70, 1069; (e) Guengerich, F. P.; Brian, W. R.; Iwasaki, M.; Sari, M. A.; Baarhielm, C.; Berntsson, P. J. Med. Chem. 1991, 34, 1838.
- (a) Yang, C. S.; Smith, T. J. Adv. Exp. Med. Biol. 1996, 387, 385; (b) Yang, C. S.; Tu, Y. Y.; Koop, D. R.; Coon, M. J. Cancer Res. 1985, 45, 1140; (c) Chemical Carcinogens; Preusmann, R., Stewart, B. W., Searle, C. E., Eds.; ACS Monograph; American Chemical Society: Washington, DC, 1984; p 643; (d) Mochizuki, M.; Anjo, T.; Okada, M. Tetrahedron Lett. 1980, 21, 3693.

- (a) Sausins, A.; Duburs, G. Heterocycles 1988, 27, 291; (b) Chennot, T.; Eisner, U. J. Chem. Soc., Perkin Trans. 1 1975, 926; (c) Eynde, J. J. V.; D'Orazio, R.; van Haverbeke, Y. Tetrahedron 1994, 50, 2479; (d) Pfister, J. R. Synthesis 1990, 689; (e) Chai, L. Z.; Zhao, Y. K.; Sheng, Q. J.; Liu, Z. Q. Tetrahedron Lett. 2006, 47, 9283; (f) Yadav, J. S.; Reddy, B. V. S.; Sabitha, G.; Reddy, G. S. K. K. Synthesis 2000, 11, 1532; (g) Zhang, D.; Wu, L. Z.; Zhou, L.; Han, X.; Yang, Q. Z.; Zhang, L. P.; Tung, C. H. J. Am. Chem. Soc. 2004, 126, 3440; (h) Nakamichi, N.; Kawashita, L.; Hayashi, M. Org. Lett. 2002, 4, 3955.
- Itoh, T.; Nagata, K.; Matsuya, Y.; Miyazaki, M.; Ohsawa, A. J. Org. Chem. 1997, 62, 3582.
- (a) Chen, W.; Jin, M. Z.; Liu, Z. L.; Wu, L. M. Chin. Chem. Lett. 1999, 10, 991; (b) Zhu, X. Q.; Zhao, B. J.; Cheng, J. P. J. Org. Chem. 2000, 65, 8158; (c) Wu, L. M.; Chen, W.; Liu, Z. L. Res. Chem. Intermed. 2001, 27, 219.
- 8. Mao, Y. Z.; Jin, M. Z.; Liu, Z. L.; Wu, L. M. Org. Lett. 2000, 2, 741.
- Lu, M.; Gang, J. G.; Liu, Z. L.; Wu, L. M. Chin. Chem. Lett. 2002, 13, 923.
- (a) Loeppky, R. N.; Outram, J. R. N-Nitroso Compounds: Occurrence and Biological Effects; IARC Scientific: Lion, 1982; (b) Wang, P. G.; Xian, M.; Tang, X.; Wu, X.; Wen, Z.; Cai, T.; Janczuk, J. Chem. Rev. 2002, 102, 1091.
- 11. Peng, L. J.; Liu, Z. Q.; Wang, J. T.; Wu, L. M. Tetrahedron Lett. 2007, 48, 7418.
- 12. The redox potentials of **2a** and DHP were measured at ambient temperature using cyclic voltammetry performed on an electrochemical analyzer (model CHI 760B), which was connected to a PC with Origin 6.0 software. Au flag was used as the working electrode, Pt flag as the auxiliary electrode, and HgCl₂/Hg as the reference electrode. $(C_2H_5)_4$ NBr was applied to a background electrolyte. The reduction potential of **2a** is -1.2 V versus Fc⁺/Fc and the oxidation potential of DHP is 0.5 V versus Fc⁺/Fc.

- 13. *Typical procedure*: A solution of 1 mmol 1a and 0.1 mmol 2a in 20 mL of anhydrous CH₂Cl₂ was stirred at room temperature. After completion of the reaction, as indicated by TLC, the reaction mixture was quenched with water. Extracted with 20 mL of CH₂Cl₂ and dried over Na₂SO₄. After removal of the solvent under reduced pressure, the products were isolated by flash chromatography on silica gel, purified by recrystallization from chloroform–hexane. Data for diethyl 2,6-dimethyl-3,5-pyridinedicarboxylate (3a): white solid; mp 70–71 °C; IR (KBr) v_{max} 2986, 2978, 2930, 2912, 1718, 1591, 1555, 1548, 1444, 1380, 1368, 1297 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 1.41 (6H, t, *J* = 7.2 Hz), 2.84 (6H, s), 4.40 (4H, q, *J* = 7.2 Hz), 8.67 (1H, s); ¹³C NMR (75 MHz, CDCl₃) δ 14.2, 25.0, 61.4, 123.0, 140.9, 162.2, 165.9; MS *m/z* (relative intensity): 251 (M⁺, 39.8), 206, 195, 178, 150, 106.
- (a) Itoh, T.; Nagata, K.; Okada, M.; Ohsawa, A. Tetrahedron Lett.
 1995, 13, 2269; (b) Eynde, J. J. V.; Delfosse, F.; Mayence, A.; Haverbeke, Y. V. Tetrahedron 1995, 51, 6511; (c) Eynde, J. J. V.; Mayence, A.; Maquestiau, A. Tetrahedron 1992, 48, 463; (d) Maquestiau, A.; Mayence, A.; Eynde, J. J. V. Tetrahedron Lett. 1991, 32, 3839; (e) Jin, M. Z.; Yang, L.; Wu, L. M.; Liu, Y. C.; Liu, Z. L. Chem. Commun. 1998, 2451; (f) Delgado, F.; Alvarez, C.; Garcia, O.; Medina, S.; Marquez, C. Synth. Commun. 1991, 619; (g) Love, B.; Snader, K. M. J. Org. Chem. 1965, 30, 1914; (h) Bacon, R. G. R.; Osuntogun, B. A. J. Chem. Soc., Chem. Commun. 1979, 1159; (i) Kurz, J. L.; Hutton, R.; Westheimer, F. H. J. Am. Chem. Soc. 1961, 83, 584.
- (a) Yanagimoto, T.; Toyota, T.; Matsuki, N.; Makino, Y.; Uchiyama, S.; Ohwada, T. J. Am. Chem. Soc. 2007, 129, 736; (b) Ohwada, T.; Miura, M.; Tanaka, H.; Sakamoto, S.; Yamaguchi, K.; Ikeda, H.; Inagaki, S. J. Am. Chem. Soc. 2001, 123, 10164; (c) Zhu, X. Q.; Hao, W. F.; Tang, H.; Wang, C. H.; Cheng, J. P. J. Am. Chem. Soc. 2005, 127, 2696.